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It is shown that the various information content or information gain measures can be expressed 
in terms of the difference between the a priori and a posteriori uncertainties. Measures based 
on uncertainty expressed by means of variance are compared with those where the uncertainty 
also involves bias of the results, and it is shown that measures of the two kinds find somewhat 
different application. 

Assessed in terms of uncertainty reduction, experimental information content is 
usually expressed as 

1= Ho - H, (1) 

where Ho is the a priori uncertainty, existing before the experiment, and H is the 
a posteriori uncertainty, remaining after the experiment has been performed. These 
uncertainties can be treated in various ways, according to what we want to ascertain 
in the experiment. Some measures differing basically only in the way of expressing 
uncertainty are compared in monograph!. 

In the present paper, information gain measures are compared according to whether 
the uncertainty considered is only dependent on the variance of the results or if bias 
is also involved, and fields of their applicability are discussed. 

THEORETICAL 

If the result of measurement or quantitative analysis is regarded2 as a continuous 
random variable ~, the desired information is the average value of the results 
E[~] = J.1.. Uncertainty of this information is given by variance V[~] = (J2 and by 
bias, the latter being characterized by the mean error D = (J.1. - X), where X is the 
true value of the experimentally established. quantity. 

• Part XXIV in the series Theory of Information as Applied in Analytical Chemistry; Part 
XXIII: Collect. Czech. Chern. Commun. 54,3031 (1989). 
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Uncertainty can be expressed by using Shannon's entropy, which for a continuous 
random variable ~ with a probability density p(x) > 0, X E (Xl, x2), for which 

J~: p(x) dx = 1 , (2) 
is given by the relation 

R(p) = - J~: p(x) log p(x) dx . (3) 

For details see, e.g., refs1•3 • 

If both the a priori and a posteriori distributions are normal, N(Jlo, o-~) and N(Jl, 0-2), 
respectively, and 0-0 ~ 0-, then the information gain from the results of measurement 
is 

I = log (0-0/0-). (4) 

In terms of variance reduction R = (0-/0-0)2 (R E (0,1»), Kateman4 expresses in
formation as 

I = - (1/2) log R . (5) 

In his papers, which is one of the first to use information theory for the evaluation 
of results of chemical experiments, Exner has shown that information obtained by 
experimental verification of theory is 

I = -log"', (6) 
where 

(7) 

in which Jlo is the value predicted by the theory; the problem of the agreement 
of the experimental result XI with theory is also discussed in ref.5 from the informa
tion point of view. 

For the a priori uniform distribution U(X1' X2) and the a posteriori normal 
distribution N(Jl, 0-2), the information content is 

I = log [(X2 - xd/(o- v'(21te)] , (8a) 

which can be modified to 

I = log [(0-0 2 v'3)/(0- v'(21te))] = - (1/2) log R + log 2 v'(3/(21te)) (8b) 

taking into account the fact that variance of the a priori uniform distribution is 
o-~ = (X2 - X 1)2/12. 
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Thus, in Kateman's conception, information content expressed as the entropy 
difference can be written as 

I = - (1/2) log R + A. (9) 

For identical a priori and a posteriori distributions we have A = 0, but, for instance, 
in Eq. (8b) we have A = log [2 ../(3/(21te»] < 0, hence, the difference of the entropies 
(8) is lower than the information gain I according to Eq. (5), given by the variance 
reduction solely. 

The concept of information as uncertainty reduction determined not only by 
variance but also by the bias of the results of measurement or quantitative analysis 
has led to the use of the divergence measure for expressing the measurement informa
tion, and more recently to the introduction of the so-called extended divergence 
measure2 •6 •7 , which is convenient for evaluating results and methods of quantitative 
analysis. A particular case of the divergence measure is the transinformation T(~, 11), 
employed1 •8 for evaluating the process of acquiring information about a random 
quantity ~ by measuring another quantity 11, the two, quantitiesl being correlated. 

The divergence measure is easy to derive by means of the Kerridge-Bongard in
accuracy measure, which for a continuous distribution is 

H(r, p) = H(r) + D(r, p) = - J~: rex) log p(x) dx, (10) 

where the "error term" 

D(r, p) = - J~: rex) log [r(x)lp(x)] dx (11) 

is a measure of divergence of the true distribution rex) and the experimentally 
established distribution p(x). The divergence measure of the information content 

I(p, Po) = H(p, Po) - H(p) = J~~ p(x) log [p(x)IPo(x)] dx = D(p, Po) (12) 

is used if the results of measurement or quantitative analysis are unbiassed, whereas 
the extended divergence measure 

I(r; p, Po) = H(r, Po) - H(r, p) = J~~ rex) log [p(x)IPo(x)] dx (13) 

is employed if the results may be biassed. 

For both the a priori and a posteriori distributions normal, we have in natural 
logarithm terms 
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which, denoting the second right-hand term At> can be written in a contracted form as 

I(p, Po) = - (1/2) In R + Al . (14b) 

While Al can be positive, zero or negative, expression (14) is always non-negative. 

The difference between the result J1. and the value J1.0 established, e.g., by preliminary 
measurement or predicted by theory, can be looked upon as a measure of surprise 
by the result obtained. Kuhn9 has discussed how unexpected experimental results 
can stimulate extension or even revision of established theories; so we consider the 
information-theoretical treatment of the measure of surprise from a result worthwhile. 

For a priori uniform and a posteriori normal distributions, the divergence measure 
(12) leads to Eqs (8); no measure of surprise occurs here because we know in advance 
that J1. E <Xl' Xz). • 

Relation (12) is useful for expressing information content of an analytical signal 
or information gain from a result of measuremene; for expressing the information 
gain from a quantitative analysis where imperfect analytical operations, matrix effect 
or inadequate calibration give rise to a systematic error (bias) J = (J1. - X) (/J/ > 0), 
the extended divergence measureZ ,6,7 according to Eq. (13) must be used. For the 
a priori, a posteriori and true distributions all normal, N(,lo, a~), N(J1., aZ) and 
N(X, an, respectively7, we have in natural logarithm terms 

1(1'; p, Po) = In (ao/a) + (1/2) [(J1. - J1.o)z/o·~ -

- (J1. - X)z/az + k(aZ - a~)/a~J ' (15a) 

where k = (ar/a)z. Denoting the second right-hand term Az we obtain in the con
tracted form 

l(r; p, Po) = - 0/2) In R + Az . (I5b) 

Again, A z can be positive, zero or negative. It will be clear that for J = 0 and k = 1, 
A z reduces to Al in Eq. (I4b). For the a priori distribution uniform and the a poste
riori and the true distributions normal (N(J1., o'Z) and N(X, an, respectively), the 
information gain in natural logarithm terms is . 

or 

1(1'; p, Po) = In [(ao 2 ~3)/(a ~(2TCek)) - (1/2) Z2 (I6b) 

or 

I(r; p, Po) = - (1/2) In R + A3 , (I6c) 
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where the term 

A3 = In [(2 .j3)J(J(2nek)) - (1/2) Z2] (17) 

is positive at low k = ((Jr/(J)2 and Z = o/(J values and negative at high k and z values. 
For k = 1 and 0 = 0, relations (16) reduce to relations (8). 

At statistically highly significant errors 0, expressions (15) and (16) take negative 
values, which can be interpreted2 ,7,lO as a case where incorrect results misinform us. 
Relations for the information gain, expressed by means of the divergence measure 
(12) or the extended divergence measure (13), can be also interpreted in terms of the 
variance reduction (5); however, quantities characterizing, e.g., the moment of 
surprise (f1. - f1.o), the quality of the standard employed for verifying the experi
mental method k = (o'r/(J)2 (refs2,7), error b or its statistical significance, charac
terized by the critical value of the normal distribution z( IX) at the (1 - IX) significance 
level, i.e. by the value Z(IX) = Z = bl(J from Eq. (16b), play here a role as well. 

DISCUSSION AND CONCLUSIONS 

Although initially derived as divergence, i.e. dissimilarity of the a priori and a poste
riori distributions, the divergence measure can be regarded as a difference of un
certainties (Eq. (12)), the a priori uncertainty being expressed in terms of the Ker
ridge-Bongard inaccuracy measure (10) and the a posteriori uncertainty, in terms 
of the entropy (3). Extension of this measure to relation (13) is given by the use of the 
inaccuracy measure for expressing both the a priori and a posteriori uncertainties. 
Against Kateman's concept4 of information as the logarithm of the variance reduc
tion, the extended divergel,1ce measure involves also the result accuracy aspect. If 
the concept of an objectively existing truth which we want to approach during the 
process of empiric knowledge gaining is adopted not only for analytical chemistry, 
as suggested by Malissa 11, but for any experimental activity, we must consider 
highly important that property of the extended divergence measure enabling us to 
evaluate results also with respect to their accuracy, i.e., according to how they agree 
with the true value, construed2 as the expected value of the true distribution rex). 

Expressing information gain by means of variance reduction can be regarded 
suitable in cases where the experiment is rr.etrologically backed up so perfectly that 
no bias of the results needs to be assumed. To an extent, relations (15) and (16) 
for 0 =f. 0 can be treated as a model of a case which should not occur in practice and 
should be prevented by using appropriate methods of data quality control12 ,13. 

Actual results of measurement or quantitative analysis may contain error, and so the 
extended divergence measure can be of use when selecting a suitable analytical or 
measuring method, during the optimization of an experirr.ental procedure, etc. Of 
practical utility is the fact that this measure enables us to estimate, approximately 
at least, such a priori 14 metrological characteristics as the results must assume 
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to provide actual information gain. In this manner, for instance, the limit of nonzero 
information content15 has been determined as the lower limit of applicability of an 
analytical method, the highest tolerable value, statistically significant at the (1 - IX) 
level of significance, of the relative standard deviation16 of biassed results, etc. 
Making use of the extended divergence measure, it is possible to choose the most 
suitable calibration procedure; etc. As to other properties of the divergence and 
extended divergence measures and to practical conclusions that can be derived from 
them, the reader is referred to the preceding papers in this series2 ,6, 7 ,15,17 and to 
ref. 10. The essence of all these cases is the application of general mathematical models 
to the solution of particular problems of experimental practice, which is a modern 
trend in chemometrics. 
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